SU DEPARTMENT OF COMPUTER SCIENCE SYLLABUS COSC 420 – High-Performance Computing

Description: The course will study principles, practices, and implementations of parallel and distributed computing. It covers three areas of high performance computing: modern computing architectures, algorithm design, and applications and programming. Through this course, students will not only learn fundamental concepts of high performance computing but also gain hands-on hardware and programming experience in this field.

Prerequisites: Grade of "C" or better in COSC 320

Required Text: None. **Supplemental References:**

- Introduction to High Performance Scientific Computing, by Victor Eijkhout.
- Using MPI: Portable Parallel Programming with the Message-Passing Interface (3E), by Gropp, Lusk, and Skjellum, 2014.
- "Programming Massively Parallel Processors: A Hands-on Approach", D. Kirk and W. Hwu, Morgan Kaufmann, 2010.

TOPICS

Introduction Limits of Sequential Computing, Concurrency and Performance Analysis.	Weeks 2.0
Parallel Processing, Memory Architecture, Modern Supercomputing Multistage Interconnection, Shared Memory: UMA/ NUMA, Distributed Memory	2.0
Distributed Systems and High Performance Computing (HPC) Matplotlib, Scikit, categorical and numerical data, graph types and stylistic choices	2.0
Parallel Programming Model and Algorithm Design Principles Programming Models and Languages; Message Passing; Data Parallel Algorithm Design; Multi-Thread Programming with OpenMP/MPI.	3.0
Applications to Scientific Programming Numerical algorithms, basics of numerical linear algebra, distributed sorting, distributed graph algorithms, distributed dynamics and simulation	2.0
HPC Design and Construction Linux HPC as Supercomputing platform, HPC Stack implementation on ARM and i686 Architectures	2.0
Exams	1.0

EVALUATION

Projects, labs, class participation: 60-80% Exams and quizzes: 20-40%

JTA/jlh 05/2021